
 

Fig. 1 : OB-fold proteins used for comparative protein folding
studies.  The structurally conserved β-barrel core of the OB-fold
consists of a three-stranded β1-3 menader (blue) and a two-stranded
β4-5 hairpin (red).  Elements of structure that are unique to the
individual proteins are left uncolored.

Structural and biophysical characterization of protein folding. 
The protein folding problem addresses how amino acid sequences determine 

protein structures [1].  The problem remains of fundamental importance in molecular 
biology as the number of new sequences identified continues to vastly outpace known 
protein structures.  Progress in this area has enormous potential dividends including 
streamlining structure determination, facilitating rational protein design, and 
understanding how proteins misfold in disease states. 

My lab’s approach to the protein folding problem has been to structurally 
characterize equilibrium intermediates that result when the native state is disrupted by 
denaturants or mutagenesis [2]. An improved understanding of the structural properties of 
initial states in protein folding is critical to the development of accurate theoretical 
models.  Residual structure in denatured states has the potential to affect protein stability 
(by raising or lowering the free energy difference from the native state), as well as 
folding kinetics (depending on whether intermediates are on- or off-pathway).  The role 
of partially folded structure in aggregative misfolding is becoming increasingly 
recognized [3].  

While our studies use a multi-faceted experimental approach, the principle 
technique in our work is NMR spectroscopy.  NMR has the advantage of being able to 
characterize structure in a solution environment relevant to protein folding, and is unique 
among spectroscopic techniques in its ability to provide information at atomic resolution 

[4]. The model system we 
have used for most of our 
folding studies are three 
proteins that lack sequence 
homology but share an ‘OB-
fold’ β-barrel structure [5].  
The presence of a shared 
structural motif together with 
divergent elements of 
structure makes it possible to 
ask whether the conserved 
structures are the most stable 

to unfolding.  This is in fact what we found based on mutagenesis and hydrogen 
exchange experiments [6-8].  In addition to OB-fold proteins, we have looked at the 
folding of α-helical coiled coils [9-11] and protein fragments such as the ribonuclease S-
peptide [12,13].  These systems have the advantage of a small size, and of a relatively 
simple α-helical structure that can be used to benchmark the NMR methods used to study 
non-native proteins (e.g. relaxation experiments [13], through-hydrogen bond coupling 
constants [12], and residual dipolar couplings [14]).     

Our studies and those of others, have pointed to a large variety of folding 
intermediates [3,15-19].  These include sub-domains that retain part of the native tertiary 
structure independent of the rest of the protein, molten globules with native-like 
secondary structure but fluctuating side-chain structure, and highly disordered species 
that retain small amounts of native-like secondary structure.  These results paint a picture 
of protein folding as a hierarchical assembly process, in which initially autonomous 
elements of structure become increasingly interdependent as the protein folds [20]. 



 

Presumably, this reflects evolutionary constraints that favored unique functional native 
states over alternative conformations. Work on the OB-fold proteins in particular, 
suggests that the independent folding properties of a conserved β-barrel motif may be 
vestiges of evolutionary processes during which the autonomy of the motif was sacrificed 
to achieve a maximally cooperative integrated structure [6].  Partially formed structures 
are particularly prone to aggregation.  This has been observed for all three of the OB-fold 
proteins under acid denaturing conditions. In all three proteins aggregation is initially 
promoted by the association of the conserved β1-3 meander (Fig. 1), which corresponds 
to the most persistent structure under denaturing conditions [21-23]. 
 
Long-term goals: 
• An unresolved issue in protein folding is whether a global folding topology persists 
under highly denaturing conditions [24].  We are using NMR residual dipolar couplings 
(RDCs) and distance restraints from engineered paramagnetic spin labels to test for the 
presence of conserved long-range structure in denatured states of OB-fold proteins.  
 
• Insights from our protein folding studies will be used to develop strategies for modeling 
protein structures. A first effort in this direction has been the development of an approach 
for supplementing structure determination in cases where there are limited experimental 
data, with ‘hydrophobic distance restraints’ derived directly from the protein sequence. 
[25] Most work on structure prediction has focused on modeling new folds. If folds could 
be modeled reliably, there still remains the problem of how to go from a coarse fold-
topology model to a usable high-resolution structure. Often, it is necessary to have 
multiple structures of a protein; for example, with and without an inhibitor.  The problem 

NMR structure of the ‘trigger site’, a folding initiation site for the α-helical GCN4 coiled-coil 
leucine zipper. (A) Best-fit superposition of the 20 lowest-energy NMR structures. The main chain is 
shown in black (carbons, nitrogens) and red (carbonyl oxygens). Selected side chains are shown in different 
colors and labeled according to their position in the GCN4 coiled-coil sequence (42). (B) Stereo side view 
of the p16-31 structure closest to the NMR ensemble average. Atoms of side chains 
forming the network of polar interactions are connected by dashed black lines. 



 

of determining closely related structures is easily tractable by X-ray crystallography 
(through Fourier difference maps), but current NMR approaches can require months of 
data collection per structure.  We are exploring the application of RDCs to this problem. 
We anticipate that RDC-based refinement methods could be of general use in modeling 
closely related structures, for example obtaining snapshots of structural changes over a 
range of solution conditions.  
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