Syllabus for MCB 335: Protein Folding

Instructors: Alexandrescu & Teschke (contact information below)

Class times: 11:00-12:15 pm Tuesday/Thursday BSP 201

Part 1: Protein physics and the folding code.

1	Jan 17	AA	Class Organization / The thermodynamic hypothesis.
2	19	AA	Survey of protein structure and folds I
3	24	AA	Survey of protein structure and folds II
4	26	AA	Student Presentation 1 – Negative design
5	Jan 31	AA	Protein physics / cooperativity / random coils /uniqueness of native state
6	Feb 2	AA	Student Presentation 2 – Intrinsically unfolded proteins
7	7	AA	Structural approaches to understanding protein folding
8	Feb 9	AA	Student Presentation 3 – Single molecule unfolding

Part 2: Intermediates

9	Feb 14	СТ	Mutagenic approaches: thermodynamics, kinetics and transition states		
10	16	СТ	Student Presentation 4		
11	21	СТ	Proline isomerization and isomerases.		
12	23	СТ	Student Presentation 5		
13	Feb 28	СТ	Early stages in protein folding		
14	Mar 2	СТ	Student Presentation 6		
March 2 – have your proposal topic approved.					

Part 3: Protein structure prediction and design

14 Mar14		AA	Protein folding hierarchy: domains, sub-domains, structure elements
15	16	AA	Student Presentation 7 – Free energy landscapes
16	21	AA	Special seminar: TBA
17	23	AA	Student Presentation 8 – Evolution of protein structures
18	28	AA	Protein structure prediction: methods and challenges
19 Mar30		AA	Student Presentation 9 – Protein modeling & design

Part 4: Chaperones

20	Apr 4	СТ	Aggregation / Inclusion bodies
21	6	СТ	Student Presentation 10
22	11	СТ	GroEL/S and CCT
23	13	СТ	Student Presentation 11
24	18	СТ	DnaK/Hsp70 and co-chaperones
25	20	СТ	Student Presentation 12
26	25	СТ	Chaperones and protein synthesis.
27	Apr 27	СТ	Student Presentation 13
D' I D		D	I J., ADDII 27 UI

Final Exam – Proposals are due APRIL 27 !!!

Recommended Books (not required): 'Protein Physics' by Finkelstein & Ptitsyn; Structure and Mechanism in Protein Science by Alan Fersht. Some additional readings will be in the MCB office BSP 104 or will be posted on WebCT.

Instructors:

Andrei Alexandrescu BSP 209 Dept. of Molecular and Cell Biology University of Connecticut 91 N. Eagleville Rd. Storrs, CT 06269 office:860-486-4414 lab: 860-486-0038 fax: 860-486-4331 E-mail: andrei@uconn.edu Carolyn Teschke BSP 206/225 Dept. of Molecular and Cell Biology University of Connecticut 91 N. Eagleville Rd. Storrs, CT 06269 office:860-486-4282 lab: 860-486-3992 fax: 860-486-4331 E-mail: teschke@uconn.edu

Student Presentations

Jan 26 SP1 Negative Design

Richardson JS, Richardson DC: Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. *Proc Natl Acad Sci U S A* 2002, **99**:2754-2759.

Wang W, Hecht MH: Rationally designed mutations convert de novo amyloid-like fibrils into monomeric beta-sheet proteins. *Proc Natl Acad Sci U S A* 2002, **99**:2760-2765.

Feb 2 SP2 Intrinsically Disordered Proteins

Dyson HJ, Wright PE: Intrinsically unstructured proteins and their functions. *Nat Rev Mol Cell Biol* 2005, 6:197-208. Fernandez CO, Hoyer W, Zweckstetter M, Jares-Erijman EA, Subramaniam V, Griesinger C, Jovin TM: NMR of alphasynuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation. *Embo J* 2004, 23:2039-2046.

Feb 9 SP3 Single Molecule Unfolding

Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM: Mechanical and chemical unfolding of a single protein: a comparison. *Proc Natl Acad Sci U S A* 1999, **96**:3694-3699.

Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Muller DJ: **Unfolding pathways of individual bacteriorhodopsins**. *Science* 2000, **288**:143-146.

Feb 16 **SP4_____**

Feb 23 **SP5**_____

Mar 2 SP6_____

Mar16 SP7 Free Energy Landscapes

Dill KA, Chan HS: From Levinthal to pathways to funnels. Nat Struct Biol 1997, 4:10-19.

Chamberlain AK, Marqusee S: Touring the landscapes: partially folded proteins examined by hydrogen exchange. *Structure* 1997, **5**:859-863.

Mar23 SP8 Evolution of protein structures

Orengo CA, Thornton JM: Protein families and their evolution-a structural perspective. Annu Rev Biochem 2005, 74:867-900.

Riechmann L, Winter G: Novel folded protein domains generated by combinatorial shuffling of polypeptide segments. *Proc Natl Acad Sci U S A* 2000, **97**:10068-10073.

Mar30 SP9 Protein Modeling & design

Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D: Design of a novel globular protein fold with atomic-level accuracy. *Science* 2003, **302**:1364-1368.

Schueler-Furman O, Wang C, Bradley P, Misura K, Baker D: Progress in modeling of protein structures and interactions. Science 2005, 310:638-642.

Apr 6 SP10 _	
Apr 13 SP11_	
Apr 20 SP12 _	
Apr 20 SP12_	